Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 301, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461223

RESUMO

Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.


Assuntos
Proteína ADAMTS4 , Âmnio , Versicanas , Feminino , Humanos , Recém-Nascido , Gravidez , Proteína ADAMTS4/metabolismo , Âmnio/metabolismo , Inflamação/metabolismo , Parto/metabolismo , Peptídeo Hidrolases/metabolismo , Nascimento Prematuro/metabolismo , Versicanas/metabolismo , Animais , Camundongos
2.
J Hazard Mater ; 468: 133704, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364577

RESUMO

Our previous study revealed that 1-nitropyrene (1-NP) exposure evoked pulmonary fibrosis in mice. However, the exact mechanism remained elusive. We found that 1-NP induced telomere damage and cellular senescence in mice lungs, and two alveolar epithelial cells lines. 1-NP downregulated telomere repeat binding factor 2 (TRF2), and upregulated FBXW7. Mechanistically, 1-NP-caused TRF2 ubiquitination and proteasomal degradation depended on E3 ubiquitin ligase activity of FBXW7. Moreover, 1-NP upregulated FBXW7 m6A modification via an ALKBH5-YTHDF1-dependent manner. Further analysis suggested 1-NP promoted ALKBH5 SUMOylation and subsequent proteasomal degradation. Additionally, 1-NP evoked mitochondrial reactive oxygen species (mtROS) overproduction. Mito-TEMPO, a mitochondrial-targeted antioxidant, mitigated 1-NP-caused mtROS overproduction, ALKBH5 SUMOylation, FBXW7 m6A modification, TRF2 degradation, cellular senescence, and pulmonary fibrosis. Taken together, mtROS-initiated ALKBH5 SUMOylation and subsequent FBXW7 m6A modification is indispensable for TRF2 degradation and cellular senescence in alveolar epithelial cells during 1-NP-induced pulmonary fibrosis. Our study provides target intervention measures towards 1-NP-evoked pulmonary fibrosis.


Assuntos
Adenina/análogos & derivados , Fibrose Pulmonar , Pirenos , Sumoilação , Animais , Camundongos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar/induzido quimicamente
3.
Br J Pharmacol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413375

RESUMO

BACKGROUND AND PURPOSE: Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH: Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS: Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS: These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.

4.
Anim Reprod Sci ; 261: 107406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141547

RESUMO

In ruminants, establishment and maintenance of pregnancy depends upon a well-coordinated interaction between the conceptus and the maternal endometrium. Epidermal growth factor (EGF) is important for embryo implantation and pregnancy establishment. However, the regulatory mechanisms of EGF expression remain unclear. FOXO1, a member of the Forkhead box O (FOXO) subfamily of transcription factors, is currently accepted as a novel endometrial receptivity marker for humans and mice owing to its timely and specific expression at the window of implantation. In this study, we examined the spatiotemporal expression profile of EGF in goat uterus during early pregnancy (Day 0 to Day 50 of pregnancy) and verified that EGF expression was regulated by FOXO1 and interferon tau (IFNT). Our results showed that EGF was highly expressed in the luminal epithelium (LE) and the glandular epithelium (GE) during conceptus adhesion (Day 16 to Day 25 of pregnancy). After implantation, EGF protein signals were continuously detected in the endometrial epithelia and appeared in the conceptus trophectoderm. Furthermore, EGF expression could be up-regulated by IFNT in goat uterus and primary endometrial epithelium cells (EECs). The luciferase assay results showed that FOXO1 could promote EGF transcription by binding to its promoter. And FOXO1 positively regulates EGF expression in goat EECs. These findings contribute to better understanding the role and regulation mechanisms of EGF during ruminant early pregnancy.


Assuntos
Endométrio , Fator de Crescimento Epidérmico , Interferon Tipo I , Proteínas da Gravidez , Gravidez , Humanos , Feminino , Animais , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Endométrio/metabolismo , Implantação do Embrião/fisiologia , Útero/metabolismo , Ruminantes , Cabras , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
5.
Biomed Pharmacother ; 169: 115859, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37948993

RESUMO

Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Ratos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ansiolíticos/farmacologia , Lipoilação , Atividade Motora , Ansiedade/metabolismo , Diazepam/farmacologia
6.
Angew Chem Int Ed Engl ; 62(52): e202313911, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37953441

RESUMO

Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.

7.
iScience ; 26(9): 107561, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664599

RESUMO

Palmitoyl acyltransferases (PATs) have been suggested to be involved in learning and memory. However, the underlying mechanisms have not yet been fully elucidated. Here, we found that the activity of DHHC2 was upregulated in the hippocampus after fear conditioning, and DHHC2 knockdown impaired fear induced memory and long-term potentiation (LTP). Additionally, the activity of DHHC2 and its synaptic expression were increased after high frequency stimulation (HFS) or glycine treatment. Importantly, fear learning selectively augmented the palmitoylation level of AKAP150, not PSD-95, and this effect was abolished by DHHC2 knockdown. Furthermore, 2-bromopalmitic acid (2-BP), a palmitoylation inhibitor, attenuated the increased palmitoylation level of AKAP150 and the interaction between AKAP150 and PSD-95 induced by HFS. Lastly, DHHC2 knockdown reduced the phosphorylation level of GluA1 at Ser845, and also induced an impairment of LTP in the hippocampus. Our results suggest that DHHC2 plays a critical role in regulating fear memory via AKAP150 signaling.

8.
Arch Med Sci ; 19(5): 1303-1313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732034

RESUMO

Introduction: Several reports have noted that severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induced lymphopenia in coronavirus disease 2019 (COVID-19) patients. However, the clinical significance of lymphopenia remains unclear. The objective of this study was to analyze the association between lymphopenia at an early stage and the prognosis of COVID-19 patients. Material and methods: All 192 hospitalized patients with COVID-19 were enrolled. Demographic data and clinical characteristics were collected and patient's prognosis was followed up. Results: On admission, 84 (43.8%) patients suffered from lymphopenia among COVID-19 patients. The count and percentage of lymphocytes on admission were lower among patients over 70 years old than those of younger patients. Multivariate logistic regression revealed that older age was a risk factor of lymphopenia. Of interest, chest CT score, a key marker of lung injury, was increased among COVID-19 patients with lymphopenia. By contrast, PaCO2, SpO2 and oxygenation index, several respiratory function markers, were decreased in COVID-19 patients with lymphopenia. Moreover, total bilirubin (TBIL) and direct bilirubin (DBIL), two markers of hepatic injury, creatinine and urea nitrogen, two indices of renal function, and creatine kinase, AST and LDH, three myocardial enzymes, were elevated in COVID-19 patients with lymphopenia. Among 84 COVID-19 patients with lymphopenia, 32.1% died. The fatality rate was obviously higher in COVID-19 patients with lymphopenia. Conclusions: Older COVID-19 patients are more susceptible to lymphopenia. Multiple organ injuries were more serious in COVID-19 patients with lymphopenia. Lymphopenia at an early stage aggravates the severity and elevates the death risk of COVID-19 patients.

9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446059

RESUMO

Inflammation of the fetal membranes is an indispensable event of parturition, with increasing prostaglandin E2 (PGE2) synthesis as one of the ultimate products that prime labor onset. In addition to PGE2, the fetal membranes also boast a large capacity for cortisol regeneration. It is intriguing how increased PGE2 synthesis is achieved in the presence of increasing amounts of classical anti-inflammatory glucocorticoids in the fetal membranes at parturition. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) synthesized by lipoxygenase 15/15B (ALOX15/15B) has been shown to enhance inflammation-induced PGE2 synthesis in amnion fibroblasts. Here, we examined whether glucocorticoids could induce ALOX15/15B expression and 15(S)-HETE production to promote PGE2 synthesis in amnion fibroblasts at parturition. We found that cortisol and 15(S)-HETE abundance increased parallelly in the amnion at parturition. Cortisol induced ALOX15/15B expression and 15(S)-HETE production paradoxically in amnion fibroblasts. Mechanism study revealed that this paradoxical induction was mediated by p300-mediated histone acetylation and interaction of glucocorticoid receptor with transcription factors CREB and STAT3. Conclusively, cortisol regenerated in the fetal membranes can paradoxically induce ALOX15/15B expression and 15(S)-HETE production in human amnion fibroblasts, which may further assist in the induction of PGE2 synthesis in the inflammatory responses of the fetal membranes for parturition.


Assuntos
Âmnio , Hidrocortisona , Gravidez , Feminino , Humanos , Hidrocortisona/metabolismo , Âmnio/metabolismo , Glucocorticoides/metabolismo , Dinoprostona/metabolismo , Parto , Membranas Extraembrionárias/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo
10.
Mol Med ; 29(1): 88, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403020

RESUMO

BACKGROUND: Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS: The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS: Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1ß, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1ß, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION: IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.


Assuntos
Âmnio , Nascimento Prematuro , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Âmnio/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33 , NF-kappa B/metabolismo , Parto/metabolismo , Nascimento Prematuro/metabolismo
11.
Biol Reprod ; 108(6): 902-911, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917263

RESUMO

N6-methyladenosine (m6A), an epigenetic modification on RNAs, plays an important role in many physiological and pathological processes. However, the involvement of m6A in goat uterus during early pregnancy remains largely unknown. In this study, we found that the total m6A level was increasing in goat uterus as early pregnancy progressed. Methyltransferase-like 3 (METTL3) is a core catalytic subunit of the m6A methyltransferase. We thus determined the expression and regulation of METTL3 in goat uterus. METTL3 was highly expressed in the luminal and glandular epithelia from day 16 (D16) to D25 of pregnancy, and it could be up-regulated by estrogen and progesterone in goat uterus and primary endometrial epithelial cells (EECs). In EECs, knockdown or overexpression of METTL3 resulted in a significant decrease or increase of cell proliferation, respectively. METTL3 knockdown reduced the m6A level of not only total RNA but also connective tissue growth factor (CTGF) mRNA. Luciferase assay suggested that METTL3 might target the potential m6A sites in the 3'untranslated region (3'UTR) of CTGF mRNA. Moreover, METTL3 positively regulated CTGF expression, and CTGF knockdown significantly counteracted the promoting effect of METTL3 overexpression on EEC proliferation. Collectively, METTL3 is dynamically expressed in goat uterus and can affect EEC proliferation by regulating CTGF in an m6A-dependent manner. Our results will lay a foundation for further studying the crucial mechanism of METTL3-mediated m6A modification in goat uterus during early pregnancy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Cabras , Animais , Feminino , Fator de Crescimento do Tecido Conjuntivo/genética , Cabras/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células/genética
12.
Inflamm Res ; 72(4): 797-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36879064

RESUMO

OBJECTIVES: Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. METHODS: The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). RESULTS: SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. CONCLUSIONS: SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.


Assuntos
Âmnio , Parto , Gravidez , Feminino , Humanos , Âmnio/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Parto/genética , Parto/metabolismo , Membranas Extraembrionárias/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Proteína Amiloide A Sérica
13.
Eur Radiol ; 33(7): 4554-4563, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809432

RESUMO

OBJECTIVE: To investigate the findings of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and serum metabolomics for differentiating pre-eclampsia (PE) from gestational hypertension (GH). METHODS: This prospective study enrolled 176 subjects including a primary cohort with healthy non-pregnant women (HN, n = 35), healthy pregnant women (HP, n = 20), GH (n = 27), and PE (n = 39) and a validation cohort with HP (n = 22), GH (n = 22), and PE (n = 11). T1 signal intensity index (T1SI), apparent diffusion coefficient (ADC) value, and the metabolites on MRS were compared. The differentiating performances of single and combined MRI and MRS parameters for PE were evaluated. Serum liquid chromatography-mass spectrometry (LC-MS) metabolomics was investigated by sparse projection to latent structures discriminant analysis. RESULTS: Increased T1SI, lactate/creatine (Lac/Cr), and glutamine and glutamate (Glx)/Cr and decreased ADC value and myo-inositol (mI)/Cr in basal ganglia were found in PE patients. T1SI, ADC, Lac/Cr, Glx/Cr, and mI/Cr yielded an area under the curves (AUC) of 0.90, 0.80, 0.94, 0.96, and 0.94 in the primary cohort, and of 0.87, 0.81, 0.91, 0.84, and 0.83 in the validation cohort, respectively. A combination of Lac/Cr, Glx/Cr, and mI/Cr yielded the highest AUC of 0.98 in the primary cohort and 0.97 in the validation cohort. Serum metabolomics analysis showed 12 differential metabolites, which are involved in pyruvate metabolism, alanine metabolism, glycolysis, gluconeogenesis, and glutamate metabolism. CONCLUSIONS: MRS is expected to be a noninvasive and effective tool for monitoring GH patients to avoid the development of PE. KEY POINTS: • Increased T1SI and decreased ADC value in the basal ganglia were found in PE patients than in GH patients. • Increased Lac/Cr and Glx/Cr, and decreased mI/Cr in the basal ganglia were found in PE patients than in GH patients. • LC-MS metabolomics showed that the major differential metabolic pathways between PE and GH were pyruvate metabolism, alanine metabolism, glycolysis, gluconeogenesis, and glutamate metabolism.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Estudos Prospectivos , Espectroscopia de Ressonância Magnética , Ácido Glutâmico/metabolismo , Creatina/metabolismo , Metabolômica , Piruvatos , Alanina
14.
Ecotoxicol Environ Saf ; 251: 114548, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652742

RESUMO

BACKGROUND: Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS: All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS: Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION: Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Telomerase , Humanos , Cádmio/toxicidade , Volume Expiratório Forçado , Pulmão
15.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36048433

RESUMO

Fetal membrane activation is seen as being one of the crucial triggering components of human parturition. Increased prostaglandin E2 (PGE2) production, a common mediator of labor onset in virtually all species, is recognized as one of the landmark events of membrane activation. Fetal membranes are also equipped with a high capacity of cortisol regeneration by 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1), and the cortisol regenerated potently induces PGE2 synthesis, an effect normally suppressed by progesterone during gestation. There is no precipitous decline of progesterone synthesis in human parturition. It is intriguing how this suppression is lifted in parturition. Here, we investigated this issue by using human amnion tissue and primary amnion fibroblasts which synthesize the most PGE2 in the fetal membranes. Results showed that the expression of 11ß-HSD1 and aldo-keto reductase family 1 member C1 (AKR1C1), a progesterone-inactivating enzyme, increased in parallel in human amnion tissue with gestational age toward the end of gestation and at parturition. Cortisol induced AKR1C1 expression via the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) in amnion fibroblasts. Inhibition of AKR1C1 not only blocked progesterone catabolism induced by cortisol, but also enhanced the suppression of cortisol-induced cyclooxygenase-2 (COX-2) expression by progesterone in amnion fibroblasts. In conclusion, our results indicate that cortisol regenerated in the fetal membranes triggers local progesterone withdrawal through enhancement of AKR1C1-mediated progesterone catabolism in amnion fibroblasts, so that the suppression of progesterone on the induction of COX-2 expression and PGE2 synthesis by cortisol can be lifted for parturition.


Assuntos
Âmnio , Hidrocortisona , Feminino , Humanos , Gravidez , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Aldo-Ceto Redutases/metabolismo , Âmnio/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Hidrocortisona/metabolismo , Parto/metabolismo , Progesterona/metabolismo
16.
Front Neurosci ; 16: 961348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992933

RESUMO

Background: Pre-eclampsia (PE) is the main cause of death in maternal and prenatal morbidity. No effective clinical tools could be used for the prediction of PE. A radiomics nomogram based on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps was established to predict PE from gestational hypertension (GH). Materials and methods: A total of 138 patients with hypertensive disorders of pregnancy were continuously enrolled in the study prospectively, namely, 58 patients with PE and 80 patients with GH. The patients were randomly divided into a training cohort (n = 97) and a test cohort (n = 41). Radiomics features were extracted from DWI and ADC maps. The radiomics signature was constructed using a least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. A radiomics nomogram was developed by combining the radiomics signature with the selected clinical risk factors. The area under the receiver operating characteristic (ROC) curves (AUC), specificity, sensitivity, accuracy, positive predictive value, and negative predictive values of the radiomics signature, clinical risk factors, and radiomics nomogram were calculated. Decision curve analysis (DCA) was performed to determine the clinical usefulness of the radiomics nomogram. Results: The LASSO analysis finally included 11 radiomics features, which were defined as the radiomics signature. The individualized prediction nomogram was constructed by integrating the radiomics signature, maternal age, and body mass index (BMI). The nomogram exhibited a good performance both in the training cohort [AUC of 0.89 (95% CI, 0.82-0.95)] and test cohort [AUC of 0.85 (95% CI, 0.73-0.97)] for predicting PE from GH. The DCA indicated that clinicians and patients could benefit from the use of radiomics nomogram. Conclusion: The radiomics nomogram could individually predict PE from GH. The nomogram could be conveniently used to facilitate the treatment decision for clinicians and patients.

17.
Ecotoxicol Environ Saf ; 238: 113595, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525119

RESUMO

The goal of this study was to analyze whether mitochondria-associated endoplasmic reticulum membrane (MAMs) dysfunction mediated arsenic (As)-evoked pulmonary ferroptosis and acute lung injury (ALI). As exposure led to alveolar structure damage, inflammatory cell infiltration and pulmonary function decline in mice. Ferritin, the marker of iron overload, was increased, GPX4, the index of lipid peroxidation, was decreased in As-exposed lungs and pulmonary epithelial cells (MLE-12). Pretreatment with ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, alleviated As-evoked ALI. In addition, As-induced non-heme iron deposition was inhibited in Fer-1 pretreated-mice. Moreover, As-triggered mitochondria damage and ferroptosis were mitigated in Fer-1 pretreated-MLE-12 cells. Mechanistically, PERK phosphorylation and mitofusin-2 (Mfn-2) reduction was observed in As-exposed MLE-12 cells and mice lungs. Additionally, the interaction between PERK and Mfn-2 was downregulated and MAMs dysfunction was observed in As-exposed MLE-12 cells. Intriguingly, PERK inhibitor and Mfn-2-overexpression all mitigated As-induced ferroptosis in MLE-12 cells. Additionally, CLPP and mtHSP70, the markers of mitochondrial stress, were upregulated, mitochondrial ROS (mtROS) was elevated, mitochondrial membrane potential (MMP) and ATP were decreased in As-exposed MLE-12 cells. Mitoquinone mesylate (MitoQ), a novel mitochondrial-targeted antioxidant, alleviated As-induced excess mtROS, mitochondrial stress, MAMs dysfunction in pulmonary epithelial cells. Similarly, in vivo experiments indicated that MitoQ pretreatment countered As-induced pulmonary ferroptosis and ALI. These data indicated that mtROS-initiated MAMs dysfunction is, at least partially, implicated in As-evoked ferroptosis and ALI.


Assuntos
Lesão Pulmonar Aguda , Arsênio , Ferroptose , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Arsênio/metabolismo , Retículo Endoplasmático/metabolismo , Camundongos , Mitocôndrias/metabolismo
18.
Front Endocrinol (Lausanne) ; 13: 873727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634493

RESUMO

Background: Bradykinin (BK) and its biologically active metabolite des-Arg9 bradykinin (DABK) play a pivotal role in inflammation. Since chorioamnionitis is the leading cause of preterm birth and prostaglandin E2 (PGE2) derived from the amnion is key to labor initiation, we investigated if bradykinin peptides are part of the regulatory network of PGE2 synthesis in human amnion at parturition. Methods: Human amnion tissue was obtained from term and preterm birth for the study of the changes of the bradykinin system at parturition. Cultured primary human amnion fibroblasts, the major source of PGE2, were used to study the effects of bradykinin peptides on PTGS2 expression and PGE2 production as well as the effects of infection mediators on bradykinin receptors. Results: Bradykinin peptides and their receptors BDKRB1 and BDKRB2 were present in human amnion, and their abundance increased in term and preterm labor. However, transcripts of the genes encoding the bradykinin precursor and its proteolytic cleavage enzymes were hardly detectable in human amnion despite the increased abundance of bradykinin peptides in term and preterm labor, suggesting that there is an alternative source of bradykinin peptides for human amnion and their actions are enhanced in human amnion at parturition. In-vitro studies in cultured human amnion fibroblasts showed that both BK and DABK increased the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the rate-limiting enzyme in prostaglandin synthesis, and subsequent PGE2 production. These effects of BK and DABK were mediated through BDKRB2 and BDKRB1 receptors, respectively, with subsequent activation of the p38 and ERK1/2 pathways. Moreover, lipopolysaccharide (LPS) and serum amyloid A1 (SAA1), the important mediators of infectious inflammation, induced the expression of both BDKRB1 and BDKRB2 through toll-like receptor 4 (TLR4). Induction of BDKRB1 and BDKRB2 expression by LPS and SAA1 enhanced BK- or DABK-induced PTGS2 expression and PGE2 production in human amnion fibroblasts. Conclusions: This study demonstrated for the first time that the human amnion is a target tissue of bradykinin peptides and the bradykinin system may be part of the regulatory network of PTGS2 expression and PGE2 production in human amnion fibroblasts at both term and preterm birth, which may be enhanced by infection.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Âmnio , Bradicinina/metabolismo , Bradicinina/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Feminino , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Inflamação/metabolismo , Lipopolissacarídeos , Trabalho de Parto Prematuro/metabolismo , Gravidez , Fatores de Transcrição/metabolismo
19.
Anal Chem ; 94(18): 6703-6710, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35476420

RESUMO

Ratiometric assays of label-free dual-signaling reporters with enzyme-free amplification are intriguing yet challenging. Herein, yellow- and red-silver nanocluster (yH-AgNC and rH-AgNC) acting as bicolor ratiometric emitters are guided to site-specifically cluster in two template signaling hairpins (yH and rH), respectively, and originally, both of them are almost non-fluorescent. The predesigned complement tethered in yH is recognizable to a DNA trigger (TOC) related to SARS-CoV-2. With the help of an enhancer strand (G15E) tethering G-rich bases (G15) and a linker strand (LS), a switchable DNA construct is assembled via their complementary hybridizing with yH and rH, in which the harbored yH-AgNC close to G15 is lighted-up. Upon introducing TOC, its affinity ligating with yH is further implemented to unfold rH and induce the DNA construct switching into closed conformation, causing TOC-repeatable recycling amplification through competitive strand displacement. Consequently, the harbored rH-AgNC is also placed adjacent to G15 for turning on its red fluorescence, while the yH-AgNC is retainable. As demonstrated, the intensity ratio dependent on varying TOC is reliable with high sensitivity down to 0.27 pM. By lighting-up dual-cluster emitters using one G15 enhancer, it would be promising to exploit a simpler ratiometric biosensing format for bioassays or clinical theranostics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , COVID-19/diagnóstico , DNA , Fluorescência , Humanos , SARS-CoV-2 , Prata , Espectrometria de Fluorescência
20.
Oxid Med Cell Longev ; 2022: 6041471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35165531

RESUMO

BACKGROUND: S100A4 is a member of the S100 calcium-binding protein family and is increased in patients with chronic obstructive pulmonary disease (COPD). Sphingosine-1-phosphate (S1P) is a naturally occurring bioactive sphingolipid, which regulates the adhesion between the cells and the extracellular matrix and affects cell migration and differentiation. The goal of this study was to analyze the correlations among S100A4, S1P, and pulmonary function among COPD patients. METHODS: All 139 serum samples and 15 lung specimens were collected in COPD patients and control subjects. S100A4 and S1P were detected in two groups. The markers of fibrosis and epithelial-mesenchymal transition (EMT) were measured in the lungs of COPD patients and control subjects. RESULTS: The protein expression of S100A4 was higher in the lungs and serum of COPD patients than control cases. Additionally, serum S100A4 was inversely associated with pulmonary function among COPD patients. Meanwhile, collagen deposition and EMT nuclear transcription factors were elevated in the lungs of COPD patients. Moreover, the protein expression of S1P was increased in the serum of COPD patients. Serum S1P was gradually increased along with pulmonary function decline in COPD patients. Further correlation analysis revealed that serum S1P was negatively associated with pulmonary function in COPD patients. Furthermore, there was a positive correlation between S1P and S100A4 in COPD patients. CONCLUSIONS: These results provide evidence that the elevation of S100A4 and S1P may be involved in the onset and progression of COPD.


Assuntos
Lisofosfolipídeos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Testes de Função Respiratória/métodos , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Esfingosina/análogos & derivados , Idoso , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Doença Pulmonar Obstrutiva Crônica/patologia , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...